Problem 28.9

This is a seat-of-the-pants problem in the sense that the first thing to notice is that you can make it look a whole more hospitable by realizing the side resistors can be repositioned as shown below.

In other words, what you have is a battery and resistor in series across a three-branch parallel circuit with one branch made up of a series combination.

Determining the equivalent resistance of the three bottom parallel branches yields:

$$
\begin{aligned}
\frac{1}{\mathrm{R}_{\mathrm{eq}, 1}} & =\frac{1}{(10.0 \Omega)}+\frac{1}{(5.0 \Omega)}+\frac{1}{(25.0 \Omega)} \\
& =.34 \\
\Rightarrow & \mathrm{R}_{\mathrm{eq}, 1}=2.94 \Omega
\end{aligned}
$$

This leaves us with:

. . . so that the current drawn from the battery is:

$$
\begin{aligned}
& \varepsilon-\mathrm{R}_{1} \mathrm{i}-\mathrm{R}_{\text {eq, }, 1} \mathrm{i}=0 \\
& \quad \Rightarrow \quad 25.0=(10.0 \Omega) \mathrm{i}+(2.94 \Omega) \mathrm{i} \\
& \quad \Rightarrow \quad \mathrm{i}=1.93 \mathrm{~A}
\end{aligned}
$$

Knowing the current drawn from the battery allows us to determine the voltage drop across $a-b$, which is:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{ab}} & =\varepsilon-\mathrm{iR}_{1} \\
& =(25.0 \mathrm{~V})-(1.93 \mathrm{~A})(10.0 \Omega) \\
& =5.70 \mathrm{~V}
\end{aligned}
$$

(This happens to be the answer to Part b.)

The voltage across $a-b$ is the same as the voltage across R_{2} and the voltage across R_{3} and the voltage across the R_{4} and R_{5} combination. That means we can write:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\mathrm{iR}_{4+5} \\
& \Rightarrow \quad(5.70 \mathrm{~V})=\mathrm{i}(20.0 \Omega+5.00 \Omega) \\
& \quad \Rightarrow \quad \mathrm{i}=.228 \mathrm{~A} \quad(\text { or } 228 \mathrm{~mA})
\end{aligned}
$$

This is the current through the 20.0Ω resistor.

